首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   122篇
  免费   9篇
  国内免费   6篇
化学   103篇
力学   3篇
数学   20篇
物理学   11篇
  2022年   1篇
  2021年   3篇
  2020年   4篇
  2019年   12篇
  2018年   11篇
  2017年   7篇
  2016年   10篇
  2015年   7篇
  2014年   10篇
  2013年   22篇
  2012年   12篇
  2011年   5篇
  2010年   4篇
  2009年   4篇
  2008年   7篇
  2007年   11篇
  2006年   6篇
  2004年   1篇
排序方式: 共有137条查询结果,搜索用时 31 毫秒
21.
The aim of the paper is to propose a definition of numerical range of an operator on reflexive Banach spaces. Under this definition the numerical range will possess the basic properties of a canonical numerical range. We will determine necessary and sufficient conditions under which the numerical range of a composition operator on a weighted Hardy space is closed. We will also give some necessary conditions to show that when the closure of the numerical range of a composition operator on a small weighted Hardy space has zero.  相似文献   
22.
Research on Chemical Intermediates - A safe, green and convenient process was developed for the synthesis of a novel group of 4,8-dihydropyrano[3,2-b]-pyrans by dialkyl acetylenedicarboxylates and...  相似文献   
23.
1-Alkyl imidazoles react smoothly with dialkyl acetylenedicarboxylates in the presence of pyridine carboxaldehydes to diastereoselectively produce 1,8a-dihydro-7H-imidazo[2,1-b][1,3]oxazine derivatives in excellent yields.  相似文献   
24.

Crystalline phosphorus ylides are obtained in nearly quantitative yields from the addition reaction between triphenylphosphine, dialkyl acetylenedicarboxylates, and imidazolidine-2-thione. A dynamic NMR effect is observed in the 1 H NMR spectrum of the stabilized ylide obtained from dimethyl acetylenedicarboxylate (Δ G = 66.6 kJmol?1 ) and is attributed to restricted rotation around the carbon–carbon partial double bond resulting from the conjugation of the ylide moiety with the adjacent carbonyl group.  相似文献   
25.
An organic‐inorganic material (NH4)2(MimAM)40[Mo132O372(CH3COO)30(H2O)72] have been synthesized by reacting [(NH4)42[MoVI72 MoV60O372(CH3COO)30(H2O)72] with the ionic liquid 3‐Aminoethyl‐1‐methylimidazolium bromide. The catalyst showed remarkably a high catalytic performance in the oxidation of dibenzothiophene (DBT) derivatives with H2O2 35% as a safe and green oxidant. The main parameters affecting the process including catalyst, acid additive, hydrogen peroxide amounts and temperature have been investigated in detail. Sulfur removal of DBT in n‐heptane reached to 98.3% yield at 40 °C using 2.5 mmol H2O2 and 100 mg of (NH4)2(MimAM)40[Mo132O372(CH3COO)30(H2O)72] after 90 min. Under the optimal conditions, BT (benzothiophene), DBT (dibenzothiophene) and 4,6‐DMDBT (4,6‐dimethyl‐dibenzothiophene) achieved high desulfurization efficiency. Our results showed that the reactivity order of different model sulfur compounds are thiophene <4,6‐dimethyl dibenzothiophene< dibenzothiophene. The catalysts could be easily separated from the reaction solution by simple filtration and recycled for several times without loss of activity.  相似文献   
26.
We present herein a new nanocatalyst, namely binary CuPt alloy nanoparticles (NPs) supported on reduced graphene oxide (CuPt‐rGO), as a highly active heterogeneous catalyst for the transfer hydrogenation (TH) protocol that is demonstrated to be applicable over the reduction of various unsaturated organic compounds (olefins, aldehydes/ketones and nitroarenes) in aqueous solutions at room temperature. CuPt alloy NPs were synthesized by the co‐reduction of metal (II) acetylacetonates by borane‐tert‐butylamine (BTB) complex in hot oleylamine (OAm) solution and then assembled on reduced graphene oxide (rGO) via ultrasonic‐assisted liquid phase self‐assembly method. The structure of yielded CuPt NPs and CuPt‐rGO nanocatalyst were characterized by TEM, XRD and ICP‐MS. The activity of Cu7Pt3‐rGO nanocatalysts were then tested for the THs that were conducted in a commercially available high‐pressure tube using water as sole solvent and ammonia borane as a hydrogen donor at room temperature. The presented catalytic TH protocol was successfully applied over nitroarenes, olefines and aldehydes/ketones, and all the tested compounds were converted to corresponding reduction products with the yields reaching up to 99% under ambient conditions. Moreover, the Cu7Pt3‐rGO nanocatalyst was also reusable in the TH by providing 99% yield after five consecutive runs in TH of nitrobenzene as an example.  相似文献   
27.
DABCO (1,4‐diazabicyclo[2.2.2]octane)‐modified magnetite with silica‐MCM‐41 shell (Fe3O4@silica‐MCM‐41@DABCO) as an effective, magnetic and novel heterogeneous reusable nanocatalyst was synthesized and analysed using various techniques. Evaluation of the catalytic activity of this nanocatalyst was performed in the clean synthesis of substituted 2‐aminodihydropyrano[3,2‐b]pyran‐3‐cyano in high yields via in situ reaction of azido kojic acid, malononitrile and various aldehydes.  相似文献   
28.
In this paper, we present a Galerkin method for Abel-type integral equation with a general class of kernel. Stability and quasi-optimal convergence estimates are derived in fractional-order Sobolev norms. The fully-discrete Galerkin method is defined by employing simple tensor-Gauss quadrature. We develop a corresponding perturbation analysis which allows to keep the number of quadrature points small. Numerical experiments have been performed which illustrate the sharpness of the theoretical estimates and the sensitivity of the solution with respect to some parameters in the equation.  相似文献   
29.
In this work, Fe2TiO5 nanoparticles were used for improving the proton conductivity, and water and acid uptake of polybenzimidazole (PBI)-based proton exchange membranes. The nanocomposite membranes have been prepared using different amounts of Fe2TiO5 nanoparticles and dispersed into a PBI membrane with the solution-casting method. The prepared membranes were then physico-chemically and electrochemically characterized for use as electrolytes in high-temperature PEMFCs. The PBI/Fe2TiO5 membranes (PFT) showed a higher acid uptake and proton conductivity compared with the pure PBI membranes. The highest acid uptake (156 %) and proton conductivity (78 mS/cm at 180 °C) were observed for the PBI nanocomposite membranes containing 4 wt% of Fe2TiO5 nanoparticles (PFT4). The PFT4 composite membrane showed 380 mW/cm2 power density and 760 mA/cm2 current density in 0.5 V at 180 °C at dry condition. The above results indicated that the PFT4 nanocomposite membranes could be utilized as proton exchange membranes for high-temperature fuel cells.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号